

Palladium-catalyzed hydrophosphorylation of 1,3-dienes leading to allylphosphonates

Farzad Mirzaei, Li-Biao Han* and Masato Tanaka*

National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305-8565, Japan Received 16 August 2000; revised 25 October 2000; accepted 27 October 2000

Abstract—Palladium-catalyzed 1,4-hydrophosphorylation of 1,3-dienes efficiently takes place with 4,4,5,5-tetramethyl-1,3,2-dioxaphospholane 2-oxide $\overline{HP(O)(OCMe_2CMe_2O)}$ to afford the corresponding allylphosphonates selectively in high yields. Mechanistic studies have revealed that the reaction proceeds through addition of intermediate H–Pd species to 1,3-diene generating a π -allylpalladium complex, which affords the adduct via subsequent reductive elimination. © 2000 Elsevier Science Ltd. All rights reserved.

The interest in the transition metal-catalyzed addition of heteroatom compounds across unsaturated carbon linkages is rapidly growing as one of the most attractive and clean methods for the construction of carbon-heteroatom bonds.1 Over the last few years we have been involved in the development of palladiumcatalyzed P-H bond addition reactions with alkynes, alkenes and allenes.2 As for 1,3-dienes, Hirao and coworkers have very briefly claimed in their paper on the coupling of hydrogen phosphonates with organic halides (Hirao coupling)³ that a hydrogen phosphonate adds to isoprene. 3c,4 However, the efficiency is not satisfactory (10% yield, 150°C, 20 h). We now wish to disclose that hydrophosphorylation of 1,3-dienes with 4,4,5,5-tetramethyl-1,3,2-dioxaphospholane 2-oxide 1 readily takes place in the presence of a palladium catalyst to selectively afford allylphosphonates in high yields. Allylphosphonates are valuable synthetic intermediates. 5,6

Heating a mixture of 1,3-cyclohexadiene (93 μ L, 1.0 mmol), 4,4,5,5-tetramethyl-1,3,2-dioxaphospholane 2-oxide **1** (164 mg, 1.0 mmol), and PdMe₂(dppb)⁷ [28 mg, 5 mol%; dppb = 1,4-bis(diphenylphosphino)butane] in 1,4-dioxane (1.5 mL) at 100°C for 12 h under nitrogen resulted in a complete disappearance of **1** to selectively afford the corresponding 1,4-addition product, allylphosphonate **2a**, in 97% GC yield. Evaporation of

the solvent followed by recrystallization of the residue using hexane gave pure **2a** in 76% isolated yield as white solid (Eq. (1)).8

As demonstrated in Table 1, the same procedure could be successfully applied to 2,3-dimethyl-1,3-butadiene to form **2b** as the sole product in 87% yield (entry 2). The reaction of 1,3-butadiene by using PdMe₂(binap) [binap = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl] gave **2c** quantitatively with a E/Z ratio of 83/17 (entry 3). Similar selectivities but somewhat low activities were found with PdMe₂(dppb) (100°C, 19 h, 96% yield; E/Z = 82/18) and $PdMe_2(dppf)$ (dppf = 1,1'-bis-(diphenylphosphino)ferrocene; 100°C, 12 h, 71% yield; E/Z = 81/19). However, the reactions catalyzed by PdMe₂(PPh₃)₂ and Pd(PPh₃)₄ were non-selective resulting in the E/Z ratios of approximately 1/1. The results were more complicated in the reactions of 1,3-pentadiene and isoprene, which respectively formed the regioisomeric 1,4-adducts 2d/2e and 2f/2g besides their cis/trans stereoisomers. Both of these reactions were most selective when effected by PdMe₂(dppf) [dppf = 1,1'-bis(diphenylphosphino)ferrocenel as shown in Table 1; the regioisomers formed via the attack of the phosphoryl group at the sterically less hindered carbon (2d and 2f) were favored over the other regioisomers with the phosphoryl group attached to the more congested carbon (2e and 2g).9

Keywords: addition reactions; catalysis; dienes; hydrophosphorylation; palladium.

^{*} Corresponding authors. Fax: +81 298 61 4430; e-mail: han@home.nimc.go.jp; mtanaka@home.nimc.go.jp

Table 1. Hydrophosphorylation of 1,3-dienes^a

Entry	Diene	Conditions	Adduct	GC yield/%
1		cat. PdMe ₂ (dppb) 100 °C, 12 h	Za O	97 (76) ^b
2	$\downarrow \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	cat. PdMe ₂ (dppb) 100 °C, 12 h	2b O	87 (80) ^b
3		cat. PdMe ₂ (binap) 100 °C, 12 h	2c 0	98 (E/Z = 83/17)
4	_/\	cat. PdMe ₂ (dppf) ^c 80 °C, 16 h	2d 0	89 (E/Z = 93/7) $7 (E/Z = 96/4)$
5	\	cat. PdMe ₂ (dppf) 60 °C, 12 h	21 0 /	82
			2g	16 (E/Z = 81/19)

^a Run by heating a mixture of 1, a diene (1~10 equiv) and a palladium catalyst (5 mol%) in 1,4- dioxane (~0.7 M).

We believe the hydrophosphorylation proceeds through the events shown in Scheme 1 (illustrated for 2,3-dimethyl-1,3-butadiene), which accommodates the following observations. As reported previously, 2e the oxidative addition of 1 (0.087 mmol) with Pd(PCy₃)₂ (1 equiv.) readily proceeded at room temperature in toluene to generate the hydridopalladium complex (3; L = PCy₃) as the sole product in 15 min. When

Scheme 1.

2,3-dimethyl-1,3-butadiene (5 equiv.) was added to this solution, π -allyl complex (4; L = PCy₃) was found by ¹H NMR spectroscopy to be formed very cleanly; the *syn* proton H^a was observed at δ 3.27 (d, $J_{\rm HP}=12.0$ Hz) as a doublet, while the *anti* proton H^b appeared at δ 2.39 (d, $J_{\rm HP}=16.0$ Hz), which was also a doublet due to the phosphorus at the *trans* position. ¹⁰ Its ³¹P NMR spectrum also displayed the emergence of new signals assignable to 4 [δ 102.5 (P(O), d, $J_{\rm P(O)P}=77.0$ Hz), 44.5 (PCy₃, d, $J_{\rm P(O)P}=77.0$ Hz)], as the signals due to 3 [δ 113.1 (P(O), t, $J_{\rm P(O)P}=41.0$ Hz), 46.0 (PCy₃, d, $J_{\rm P(O)P}=41.0$ Hz)]^{2e} gradually diminished. Conversion of 3 to 4, as estimated based on the intensity of ¹H NMR signals, was approximately 11% after 30 min and was complete after 17 h. Finally, heating the resulting solution at 80°C for 1 h, reductive elimination of 2b (δ 37.2) from 4 readily took place in a quantitative yield with concomitant regeneration of Pd(PCy₃)₂ (δ 39.2).

Acknowledgements

We thank the Japan Science and Technology Corporation (JST) for partial financial support through the

^b Figures in parentheses are isolated yields.

^c PdMe₂(binap) performed similarly.

CREST (Core Research for Evolutional Science and Technology) program and for a fellowship to F.M.

References

- Recent reviews: (a) Horn, K. A. Chem. Rev. 1995, 95, 1317. (b) Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351. (c) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179. (d) Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957. (e) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435. (f) Han, L.-B.; Tanaka, M. Chem. Commun. 1999, 395.
- (a) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571. (b) Han, L.-B.; Choi, N.; Tanaka, M. Organometallics 1996, 15, 3259. (c) Han, L.-B.; Hua, R.; Tanaka, M. Angew. Chem., Int. Ed. 1998, 37, 94. (d) Han, L.-B.; Tanaka, M. Chem. Lett. 1999, 863. (e) Han, L.-B.; Mirzaei, F.; Zhao, C.-Q.; Tanaka, M. J. Am. Chem. Soc. 2000, 122, 5407. (f) Zhao, C.-Q.; Han, L.-B.; Tanaka, M. Organometallics 2000, 19, 4196. See also: (g) Lipshutz, B. L.; Buzard, D. J.; Yun, C. S. Tetrahedron Lett. 1999, 40, 201. (h) Gilbertson, S. R.; Fu, Z.; Starkey, G. W. Tetrahedron Lett. 1999, 40, 8509.
- (a) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetrahedron Lett. 1980, 21, 3595. (b) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Synthesis 1981, 56.
 (c) Hirao, T.; Masunaga, T.; Yamada, N.; Oshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55, 909. (d) Xu, Y.; Li, Z.; Xia, J.; Guo, H.; Huang, Y. Synthesis 1983, 377. (e) Holt, D. A.; Erb, J. M. Tetrahedron Lett. 1989, 30, 5393. (f) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244. (g) Uozumi, Y.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 9887. (h) Kurz, L.; Morgans, Jr., D.; Waldyke, M. J.; Ward, T. Tetrahedron Lett. 1990, 31, 6321.
- 4. We thank one of the reviewers for notifying us of this precedent.
- For their diverse applications in the preparation of dienes and polyenes via Horner-Emmons olefination with carbonyl compounds, see: (a) Kende, A. S.; Blass, B. E.; Henry, J. R. *Tetrahedron Lett.* 1995, 36, 4741. (b) Burke, S. D.; Hong, J.; Mongin, A. P. *Tetrahedron Lett.* 1998, 39, 2239. (c) Whang, K.; Venkataraman, H.; Kim, Y.; Cha, J. K. J. Org. Chem. 1991, 56, 7177. (d) Asato, A. E.;

- Mead, D.; Denny, M.; Bopp, T. T.; Liu, R. S. H. J. Am. Chem. Soc. 1982, 104, 4979.
- Only a few methods are available for their preparation:

 (a) Bhattacharya, A. K.; Thyagarjan, G. Chem. Rev.
 1981, 81, 415. For other preparations: (b) Kiddle, J. J.;
 Babler, J. H. J. Org. Chem. 1993, 58, 3572. (c) Lu, X.;
 Zhu, J. J. Organomet. Chem. 1986, 304, 239. (d) Basavaiah, D.; Pandiaraju, S. Tetrahedron 1996, 52, 2261. (e) Malet, R.; Moreno-Manas, M.; Pleixats, R. Synth. Commun. 1992, 22, 2219. (f) Janecki, T.; Bodalski, R. Synthesis 1990, 799.
- 7. We have reported that dimethylpalladium complexes Me₂Pd(PR₃)₂ are good catalyst precursors for the hydrophosphorylation reactions (Ref. 2a). They are easily synthesized by the literature methods: (a) Calvin, G.; Coates, G. E. J. Chem. Soc. 1960, 2008. (b) Ozawa, F.; Ito, T.; Nakamura, Y.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1981, 54, 1868. (c) de Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. Organometallics 1989, 8, 2907.
- 8. Data for **2a**: white powder, mp 80°C. ¹H NMR (CDCl₃) δ 5.83–5.90 (m, 1H), 5.63–5.72 (m, 1H), 2.59–2.64 (m, 1H), 1.94–2.00 (m, 6H), 1.48 (s, 3H), 1.46 (s, 3H), 1.32 (s, 6H); ¹³C NMR (CDCl₃) δ 131.3, 121.1, 87.8, 36.5 (J_{CP} = 132.2 Hz), 25.1, 24.9, 24.5, 24.4, 22.8, 20.5; ³¹P NMR (CDCl₃) δ 42.6. HRMS for C₁₂H₂₁O₃P, calcd: 244.1228, found: 244.1252. Anal. calcd for C₁₂H₂₁O₃P: C, 59.00; H, 8.67. Found: C, 59.12; H, 8.00.
- 9. The following observation suggests that the predominant formation of the *E*-isomers of **2c**, **d**, **e** and **g** appears to result from the kinetic control during the product forming process, rather than from possible *Z*-to-*E* isomerization due to the thermodynamic control. Thus, a mixture of separately prepared *Z*-rich **2e** (0.27 mmol; E/Z = 27/73), 2,3-dimethyl-1,3-diene (5 mmol), **1** (1.0 mmol), and PdMe₂(dppb) (28 mg, 5 mol% relative to **1**) in dioxane (1.5 mL) was heated at 100°C for 12 h to give **2b** in 71% GC yield. The E/Z ratio of **2e**, however, was retained unchanged within the error of GC.
- 10. The correlation of H^a and H^b was also unambiguously confirmed by ${}^{1}\text{H}-{}^{13}\text{C}$ COSY NMR spectroscopy. In ${}^{13}\text{C}$ NMR, the terminal carbon of **4** appeared at δ 58.0 (d, $J_{\text{CP}} = 52.7$ Hz). For NMR studies on π -allylpalladiums, see: (a) Powell, J.; Shaw, B. L. *J. Chem. Soc. (A)* **1967**, 1839. (b) Vrieze, K.; Praat, A. P.; Cossee, P. *J. Organomet. Chem.* **1968**, *12*, 533.